If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+18x+12=7
We move all terms to the left:
6x^2+18x+12-(7)=0
We add all the numbers together, and all the variables
6x^2+18x+5=0
a = 6; b = 18; c = +5;
Δ = b2-4ac
Δ = 182-4·6·5
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{51}}{2*6}=\frac{-18-2\sqrt{51}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{51}}{2*6}=\frac{-18+2\sqrt{51}}{12} $
| 4(3z-5)=16 | | 7x+2x-3x=7+5 | | x^2+14x+50=1 | | 3x+17=8(x-2)+13 | | -1h-6= | | 5(2x+3)=12x-2(3x+2)+3 | | 2.9v=-21.46 | | 3a+2a-8=23 | | 25x-18-17x=4(2x-5)+2 | | 2500=2+1/2c | | 2x-8+116=90 | | 7x-(3)=32 | | F(x)=-16x^2+32x+5.2 | | -1/6=-1/2u | | 4.6+10m=7.91 | | -2(m-1)=m-4 | | 20-12x=8x2 | | (3z−7)²+16=0 | | F(x)=16x^2+32x+5.2 | | 3x–4(4)=65 | | 1/5(k-3)=3/4 | | (3x+7)+(3x+6)+(3x)=(3x)+(3x)+(4x+3) | | 7z-11=z+1 | | 20=4-8x | | -9x+12×4(3x-3)=7(x-2)-4x+14 | | m-3/7=-5 | | 3x–4(4)=65, | | 3(2x+3)=-14 | | 1÷9(9t+27)=-8 | | (3z−7)2+16=0 | | 5x-2+9x=14 | | 0=3y^2+3y-28 |